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STOCHASTIC LANCHESTER-TYPE COMBAT MODELS I

L. Billard

Florida State University

ABSTRACT

There has been a lot of activity in recent years on

the study of Lanchester-type combat models, especially from

a deterministic standpoint. We consider some of these models

in a stochastic framework and indicate how the appropriate

deterministic model can be recast stochastically. Techniques

for obtaining the corresponding solutions to the resultant

differential-difference equations are discussed. These

techniques are similar to those developed for use in other

population process modelling situations such as epidemic

theory and competition models. These are used to give the

actual solution for the stochastic model of the original

Lanchester model.
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STOCHASTIC LANCHESTER-TYPE COMBAT MODELS I

by

L. Billard

Florida State University

1. INTRODUCTION

Since World War II there has been much activity on the

study of combat models based on the original work of Lanchester

(1914). The so-called Lanchester models describe the situation

in which two forces are in combat with each other with each side

losing men or equipment (tanks) by attrition in accordance with

some preassigned attrition law. These laws vary from the very

simplest formulation used by Lanchester to quite complex cases.

An extensive review of these different situation is presented

in Taylor (1978).

Basically the model for the combat process can be

described in terms of the sizes of the twn corbat forces. Most

of the work in the literature so far has confined its attention

to studying the combat process in a deterministic framework.

While such an approach can prove useful in providing broad guide-

lines as to the behavior of a given combat situation, it is

likely that a more accurate account can be obtained when the

process is viewed stochastically. Therefore, in this paper it

is shown how analogous stochastic combat models can be developed,

and the appropriate solutions are derived. Specifically we

show that a stochastic analogue of the Lanchester-type combat

models is nothing but a particular bivariate death process.
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Furthermore if we wish to extend the simplest combat models

to allow for reinforcements we will have a bivariate birth

and death process.

In the following section, we describe the general bivariate

pure death process. This is applied to the particular case of

the original Lanchester model in Section 3. In Section 4, we

show how several other models can be formulated as a bivariate

death process. These are models which generally have been

considered in the literature from a deterministic approach.

Some have been fully solved and others only partially solved

(that is, for some finite subset of the governing parameters).

We note that using the results of our Section 2, formal solu-

tions can be found to the stochastic analogues in all cases.

Then, in Section 5, we consider some models whose stochastic

formulation is that of a bounded bivariate birth and death

process. Finally we consider combat duration time in Section 6.

Numerical results and comparisons for varying parameter values

and battle force sizes will be presented in a companion paper.
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2. BIVARIATE DEATH MODEL

Let B(t) and R(t) be the size of the Blue and Red

forces at time t, respectively, and let particular state values

be b and r, respectively. Typically, we may be interested

in the number of men, or of tanks, or of both men and tanks,

etc. We interpret "size" as the number of units (men,

tanks, etc.) under discussion. Suppose that at time t = 0,

B(0) = B0 and R(0) = R0 .

The two forces are in combat with each other and units

are lost according to various attrition laws, the particular

attrition law depending on the actual modelling situation at

hand. For general attrition rates c(b,r,t) and $(b,r,t) for the

Blue and Red forces, respectively, the general deterministic

model is such that the following equations are satisfied:

db

(1)

dt

When we view the process stochastically, that is, when

B(t) and R(t) are taken to be random variables, the attrition

terms a(b,r,t) and B(b,r,t) translate into infinitesimal

transition probabilities according to the equations:

3



P{B(t+h) =b-1, R(t+h) =rIB(t) = b, R(t) = r)

c(b,r t) h + o (h)

(2) P{B(t-h) =b, R(t+h) =r-.11B(t) - b, R(t) = rl

=8(b,r,t)h + o(h),

P{two or more changes in (t,t+h)} = o(h),

and hence

P{B(t+h) = b, R(t+h) = rIB(t) = b, R(t) =r}

= 1 - {ct(b,r,t) + 0(b,r,t)}h + o(h)

where limh+.o o(h)/h = 0

if we write

Pb,r (t) =P{B(t) =b, R(t) =l

then the forward differential-difference equation governing this

process is (there is a corresponding backward equation also)

(3 PbL Wt = -{a(b,r,t) + B(b,r,t)} brt

+ a(b+1,r,t) Pb+lr(t) + 6'(b,r+l,t) Pb r+i(t),

for (b,r) E A ={(b,r):0 < b < B0 , 0 <r <Rol, and where

4



Pb,r(t) 0 whenever (b,r) f A. The initial conditions

are

PB0,R0(0) = Pb,r(0) = 0 for (b,r) ) (B0 ,R0 ).

As written here the transition probability generators

c(b,r,t) and 8(b,r,t) are any (positive) function of the

state of the process (b,r) and any function of time t. Fre-

quently, the models of interest are such that these generators

are time independent, that is, a(b,r,t) = c(b,r) and

8 (b,r,t) = 8(b,r). When this holds, the set of equations (3)

is just the bivariate pure death process described by Billard

and Kryscio (1977). They then give the solution for Pb,r(t)

for this equation for any generalized c(b,r) and 8(b,r)

provided that

(4) a(bl,r I ) + S(bl 1 rI) I a(b21 r2 ) + S(b2 ,r2 )

for (bl,rI) 1 (b2,r2 ).

Thus,

B0 R0

(5) Pbr(t) = c1 (m,wJB0 ,R0 ) c2 (m,wlb,r) exp{d(m,w)t},m--b w--r

where

d(b,r) =-a(b,r) - S(b,r)

and where c1 (m,wJB0 ,R0 ) and c2 (m,wlb,r) are given in Billard

and Kryscio (1977, eqns. 10-11).
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Most processes of practical interest are such that (4)

holds naturally. In obtaining their solution, Billard and Kryscio

(1977) essentially exploit and utilize a more general theorem

given in Severo (1969a). In the event that the restriction (4)

does not hold, the solution can still be found by using the Severo

theorem directly. Likewise, when the transition generators are

functions of time t, direct use of Severo's theorem yields the

required solution to (2). In any event, exploitation of the

underlying structure which expresses itself as a partitioning

scheme as used in Billard and Kryscio (1977) and Billard (1980),

has the advantageous effect of reducing considerably the degree

of complexity that a first glance at Severo's result suggests

is involved.
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3. LANCHESTER'S MODEL

The simplest formulation for combat models is that of

Lanchester (1914) where it is supposed that losses on each side

are proportional to the size of the opposing force. This is the

case of "aimed" fire. That is,

ct(b,r,t) = c(b,r) = y1 r

and

3(b,r,t) = a(b,r) = Y2b

For convenience, we rescale so that a (b,r) =Xr and 3(b,r) =b

where now X is the relative effectiveness of the Red force to

the Blue force. Then, the appropriate differential-difference

equation governing this process is simply, from (3),

(6) d P (t) = -( t+b) Pb,r(t) + b Pb,r+l(t) + Xr Pb+l,r(t)

for (b,r) E A and where we note that for boundary values

(b,r) suitable adjustment is necessary. In matrix form, we may

write (6) as

(A Pb,r(t)) = B (Pb,r(t))

where B is the matrix of coefficients (of transition generators).

Thus in the particular case that B0 = 4, R0 = 2 and X = .8,

B is given in Table 1.

The solution to (6) is given by (5) where it is readily

verified that
7



('7a) c (m,wiB,,R)

(Xw) BO0 / (B -m), w R

1R -w+1 B O-r RI -10 R 1 2i1 -w+1 R -W

0 11 0

R 0-w 0 -

R O-W(Bo +1 - i,)

{. Rr+- +A( -w+1-vi ,X( W < R7
0~ a 0 j

with i = 1 and i~*- =B0 m+l; and

(7b) c 2 (r,wlb,r)

rn) -b rn) -b (-)r =w

' w-r+l ~wr+1 ~w-r A rn-0b i-i 0 (W 2h -r'w-r+lW-

W1 1= Xwr7mZ'/tWr)iw-r

{Awr -1-2I~-r i -2:x 1VXi Iv- {A(1-v)-i}' r <w,

with i rnrl -b+1.
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In matrix notation, the set of state probabilities may

be written as

(Pb r(t)) = C e(t)

where the vector e(t) has elements {exp(bit)} with b.

being the ith diagonal element of B and the elements of the

matrix C being determined from (7). In our example, the

corresponding C matrix is given in Table 2. Thus, for example,

P{B(t) = 2, R(t) = 2} = 1.28e 5 " t - 2.56e46t + 1.283e 3 6 t

Further details on how to calculate these quantities algorithmically

will be discussed in the forthcoming paper dealing with numerical

calculations and comparisons generally.

We notice that the underlying structure for both c('

and c 2 () is very similar, and furthermore within each formula

the structure for each iv term is also similar. This allows

computer calculation of these quantities to run without too much

difficulty. This effect is especially apparent in the particular

case that X = 1, that is, when the two forces are equally

effective. In this case we find that

9



cl(mwIB0 ,R0 ) (B0 + R- m -W)'

0 0 0
wB 0-m w RW , W = R

- iR0-w+l i2  i i[ .. [ Ro  R0-1 ... wlR-0 2~ R0i1 
1 0 IR -1)2 12-110 R -w+IR0-

R0 -w=1 i1=1

R0 -w
x n (B0 + 1 -i) w < R

v=1

and

c 2 (m,wlb,r) •(m+w-b-r).

m-b m-b r=w

iw-r+1  i2 im+w-b-rwi-  i2-i 1  iwr+l-i- 1I ... ( 1 ) 1 (w-1) 2... r

w-r i 1 =1

w-rX (M + 1 - v, r < w
r=l

Gye and Lewis (1976) have argued that it is quite reasonable that

in the Battle of Trafalgar, X = 1. Other such situations can be

easily visualized.

Once expressions for Pb,r(t) have been determined, other

quantities of interest can be obtained. Suppose we are interested

in the event that in time t the Blue force loses x units while

the Red force loses none. Substitution in (5) and (7) yields

the result

10



(8) P{B(t) = B0 - x, R(t) = R0 }

PB 0 -x,(t) = exp[-(B0-x+R0X)t] (XR0) X(l-e- ) /x'.,

x P=o0,,BR0

"+ X = 0, ... , B0 .

Likewise, if we are concerned with the probability that Red

loses no units (regardless of the number of loses on the

Blue side) up to time t, we have

B 0

(9) P{R(t) = R0  B -xR (t)
-0 0 0

which can be determined from (8).

These results (8) and (9) could be likened to the model

described by Gaver (1979) in which a force of initial size B0

attacks a bastion or stronghold of size R0 . Gaver assumed

that the Red's stronghold is sufficient to guarantee no loss of

Red units. He then considers the size of the Blue force at time t

using always the deterministic approach. Gaver looks at two

cases. One case assumes that the attrition rate of the Blue

force is a result of unaimed fire by the Red force. Therefore,

in the terminology of the present paper, the (stochastic) trans-

ition rate is

a(b,r,t) = pu (R0 /B 0 )b,

where pu is the attrition parameter. In the other case, Red

employs aimed fire and hence the combat is modelled so that

a(b,r,t) Pab

11



for attrition parameter Pa- In either case, Gaver's process

is slightly different from the Lanchester results (8) and (9)

since, although the quantity of interest includes the fact of no

loses to the Red force, it is nevertheless possible probabilisti-

cally that the Reds do lose some units by attrition. In Gaver's

model it is assumed the Reds cannot lose any units whatsoever.

Returning to the Lanchester model, we can easily obtain

the expected number of units lost by time t by the Blue force

given that the Red force has no loses. Let this random

variable be denoted by X(t). Then,

B 0
Efx(t)} I x P(B(t) = B0 - xjR(t) = R 0

x=O

B0  B0

- x Ps 0x,R(t)/ PBx,R(t)
X=0 0 x 0  x=0 0 0

= 0 ( 1 -e - t) S(B 0 -1)/S(B 0 )

where

S(p) = {XR0 (l - e - t)e t }y/y '-

y=0

If B0  is sufficiently large so that S(B 0 ) S(B 0-1), we have

EfX(t) } AR0[-e- t)

Hence, the eventual expected number of loses on the Blue side is

lim E{X(t)} = XR0

This result is what we would expect intuitively.

12



We can relate the stochastic and deterministic models

through the expectations since the attrition rates are linear

functions of the variables involved. Thus, if we multiply (6)

throughout by b and sum over all (b,r) values, we have

d E{B(t)} = -XE{R(t)}

Likewise, multiplying by r and summing over (b,r) gives

d E{R(t)} =- E{B(t)'.

Comparison with the deterministic equations shows that the

expected values of the stochastic variables equals the solution

of the deterministic equations. We note this correspondence

does not necessarily hold when the attrition rates become non-

linear in b and/or r.

13
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4. OTHER COMBAT MODELS

In this section we briefly describe how other combat models

can be expressed stochastically. There have been many models

proposed in the literature. An extensive and exhaustive review

of such models has been made by Taylor (1978) to which we refer

the reader for further details, elaboration, and justification.

These models have by and large been studied from a deterministic

viewpoint only. We confine outselves here to establishing certain

stochastic analogues of some of these processes. Specifically,

we obtain the appropriate format for the transition probability

generators a (b,r,t) and 8 (b,r,t).

Once the generators have been established, it is then a

relatively simple and direct procedure to solve the corresponding

differential-difference equations as discussed earlier in Section 2.

Obviously the simpler the form for c(b,r,t) and a(b,r,t), the

simpler the resulting solutions will be, such as we saw in the

previous section for the original Lanchester model. Quite clearly

the reduction achieved depends on the actual structure of these

generators. Wher a(b,r,t) and 8(b,r,t) are linear functions

of b or r, such reduction will be substantial and nice. How-

ever, even the most complicated cases can still be solved since

use of the Severo theorem is completely general without any con-

fining restrictions as far as our models are concerned.

Taylor and Brown (1976) establish what they call

"variable-coefficient Lanchester-type equations of modern warfare"

14



where the attrition rate for each side is time-dependent. By

analogy, we find the transition probability generators to be

given by

(10) a (b,r,t) = a(t)r and a(b,r,t) = b(t)b

If a(t) = Y1 h(t) and b(t) = Y2h(t), rescaling of time from

t to h(t) produces generators

a (b,r,t) = ylr and 8 (b,r,t) = y2b

which is the Lanchester model of Section 3.

Range-dependent attrition rates were introduced by

Bonder (1967). Here, we have

a(b,r,t) = -a(d)r and B(b,r,t) = -a(d)b

where a(d) and 3(d) are the attrition rates for the Blue and

Red forces, respectively, dependent on the range or distance

between the two forces. In some cases of tactical interest,

a(d) and B(d) may be represented by the function

1

P(l- d/d 2 ) , 0 < d < d2

a(d) = I 0 , d2 <d ,

and

15



P2(1 -d/d I ) , 0 < d < d i

8(d) = 0 d dl < d,

where d and d2  are the maximum effective ranges of the Blue
12

and Red forces, respectively, and where Pl' P2' p, and P2 are

appropriate nonzero constants. If at t = 0, d < M in (dl,d 2) ,

that is,when combat begins both forces are within weaponary range

of each other, and if there is no retreat, then this process re-

duces to the Lanchester model of Section 3 where now

Yi =  i(1 - d/d 3-i) ' i = 1,2 .

However, it is equally (perhaps more) reasonable to assume

that the range parameter d is itself time dependent. Bonder

(1967) takes

d -d(t) = do - vt

where d0  is the initial range at t = 0 and v is the constant

attack (closure) speed. Thus, the attrition rates a(d) and

8 (d) are now time dependent.

The range-dependent attrition rates of Bonder are a

particular case of a more general power attrition rate class of

models discussed by Taylor and Brown (1976) and Taylor and Comstock

(1977). This general class is such that the transition prob-

ability generators assume the form c(b,r,t) = k1 (t + C) and

16



3(b,r,t) = k2 (t + C + A) , where A > 0 is called the offset

parameter and C > 0 is called the starting parameter. This

accommodates the situation in which the forces have different

maximum effective ranges and/or the battle begins within those

maximum ranges. Taylor and Comstock (1977) give the solution

to the deterministic model when there is no offset that is,

A = 0, as well as for A > 0 when P1 = P2 = 1 and p, = 1,

= 2. We note that the stochastic solution can be obtained

for all and i2

A distinguishing characteristic of all the models considered

so for is that the attrition rate of each force is proportional to

the size of the other force and in no way depends on its own size.

It is quite reasonable to expect that attrition could be propor-

tional to the size of both opposing forces. This is especially

so far unaimed fire (but can be equally argued for aimed fire)

when it is realized that the probability that a unit on the Red

force, say, will kill one unit (out of the remaining B(t)

units) on the Blue force, increases (decreases) as the size B(t)

increases (decreases) since there are more (fewer) units on which

his fire may fall. In this context, the appropriate transition

probability generators in a time independent situation would be

a(b,r,t) = Ylbr and S(b,r,t) = y2br. We note that here the

generators are time independent so that the solution (5) holds

directly. However, there is effectively a time dependency in

that the actual size of each force is of course a function of time.

17
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This model is mathematically equivalent to the Weiss (1963)

predator prey model whose solution is given in Billard and

Kryscio (1977).

Let us now consider the situation in which one or both

sides has a supporting system which itself is not subject to

attrition. Taylor and Parry (1975) considered a particular case

of such a process which when presented as a stochastic process

will have transition probability generators

a (b,r,t) =-a(t)r- b1 (t)b

and

a(b,r,t) = -b(t)b - a 1 (t) r

where a(t) and b(t) have the same interpretation as in (10)

and where a(t) > 0 and b 1 (t) > 0 represent the attrition

coefficients on the Red, and Blue, forces due to the supporting

fire of the Blue, and Red, forces, respectively. Other situations

come readily to mind such as a model in which the attrition from

the supporting fire is also dependent on the size of its target

(opposing force). Then, we would have

a(b,r,t) = -a(t)r - b1 (t)br

with 3(b,r,t) similarly defined if the same conditions prevail

for the Red side.

18



Finally, Helmbold (1965) concerned himself with the

situation in which grossly unequal force sizes are in combat. His

modification of the Lanchester equations, when viewed stochastically,

gives us

c(b,r,t) = -a(t) h(b/r)r

and

6(b,r,t) = -b(t) h(r/b)b

where h(z) is interpreted as the effectiveness-modification

factor. Helmbold imposed some conditions on the h(z). However,

we note that for the stochastic model we are able to find the

appropriate conditions without his restrictions

Quite clearly the concept of supporting fire can be combined

with Helmbold's model. This has been done by Taylor (1976) in

the particular case that h(z) = zc for some constant c > 0.

19
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5. BIRTH AND DEATH MODELS

One feature of the models discussed to date is that only

losses due to attrition occur to the combat forces, that is, they

are pure death processes. However, there are some situations

which may be adequately modelled as a birth and death process as,

for example, when reinforcements are permitted. If the maximum

number of possible reinforcements is known in advance, then we

have a bounded birth and death process.

As before, let B(t) and R(t) represent the size of

the Blue and Red forces at time t, respectively; and let B0 = B(0)

and R0 = R(0). Suppose that at time t there remain B*(t) and

R*(t) Blue and Red reinforcements, respectively and suppose

B*(0) = B* and R*(0) = R*, that is, B* and R* represent the

maximum possible reinforcements available. Thus, after time t,

B* - B*(t) actual reinforcements have been added to the Blue0
combat force, with R* - R*(t) similarly defined for the Red

side. Let B*+B 0 =B and R*+R 0 =R. Let

X(t) = (B*(t), B(t), R*(t), R(t)) with realization x= (b*,b,r*,r).

Then, for a completely general model, we have the following

infinitesimal transition probabilities (corresponding to (2))

P{X(t+h) = (b*-l,b+l,r*,r)IX(t) = x} = A (x,t)h + o(h) ,

P{X(t+h) = (b*,b,r*-l,r+l)lX(t) = x} = X2 (x,t)h + o(h) ,

(11) P{X(t+h) = (b*,b-l,r*,r)IX(t) = x} = pl(x,t)h + o(h)

P{X(t+h) = (b*,b,r*,r-l)IX(t) = x} = i2 (x,t)h + o(h)

P(two or more changes in (t,t+h)} = o(h)

20
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and hence

P{X(t+h) =xIX(t) x} (=x t) 2 x )h h

If we writei1 1-t+ j(t)h+o)

p (X,t) = P{(t) =Xl,

the differential-difference equation governing the process is

(compare (3))

d 2
(12) J- p(x,t) = {.(x,t) + ~J. (x,t)l p(x,t)

+ X (b*+1,b-l,r*,r, t) p(b*+l,b-l,r*,r,t)

+ x 2 (b*,b,r*+1,r-l, t) p (b*,b,r*+1,r-1, t)

+ 1(b*,b+l,r*,r) p(b*,b+l,r*,r,t)

+ 12 (b,b,r*,r+l) p(b*,b,r*,r+1,t)

for

x x:Q < b* < B*, 0 < r* < R*
0 <b < B, 0 <r < R

and where p~x,t) 0 whenever x f B. The initial conditions

are

p(B*,B01 RR, ) =1 ,p(x,O) =0 for x (B*,BQIR*,R)
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The equation (12) can be solved by combining the techniques

of Severo (1969a,1969b). When the transition generators are time

independent, that is, Xi (x,t) = X i(x) and Pi(x,t) = _i (x),

i = 1,2, an explicit solution for any arbitrary Xi(x) and

(x), i = 1,2, is given in Billard (1980).

The wi(x,t), i = 1,2, terms give the attrition rates

and typically we would expect them to assume the same forms as

the c(b,r,t) and S(b,r,t), respectively, presented earlier.

The terms Ai(x,t), i = 1,2, represent the rates that reinforce-

ments are added. Though written generally here, it is reasonable

to expect that for models of practical interest, these generators

will be a function of the size of the combat force itself. Thus,

for example, the case where more reinforcements are brought in

when the combat force itself becomes small could be reflected by

a transition generator

X (x,t) = X(t)/b

or simply

Xl(xt) = A/b

Recently, Gaver (1979) investigated the problem of infor-

mation flow. In his model, individual units start off with un-

aimed fire but then as information about the opposing force is

gathered the fire becomes aimed fire. Thus, in the X(t) notation

used above, B*(t) is the number of Blue units still using unaimed
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fire at time t, B(t) is the number of Blue units using aimed

fire at time t, and R*(t) and R(t) are the corresponding

quantities for the Red force. If all units improve their fire

to aimed fire before they themselves are killed, we have exactly

the situation modelled in (11) and (12). However, it is more

realistic to assume that some of the units never learn from the

information gathered, thus remaining with unaimed fire, and will

themselves be lost by attrition. To model this situation, the

infinitesimal transition probabilities (11) still apply in

addition to

P{X(t+h) = (b*-l,b,r*,r)IX(t) = x1 = y1 (x,t)h + o(h)

and

P{X(t+h) = (b*,b,r*-l,r)(X(t) = x1 = y2 (x,t)h + o(h)

and where now

2
P(X(t+h) = xIX(t) = x} = 1 - [ {xi(x,t) + i(x,t) +7i(x,t)}h+o(h).

i=l -t)+i(i)+(xthoh.

Thus, for each i = 1,2, the Xi(x,t) represent the

information flow, the pi(x,t) represent the loss of aimed units

from attrition, and the yi(xt) represent the loss of unaimed

units from attrition. Suitable adjustment of equation (12) will

give us the appropriate differential-difference equation for the

process. This latter equation an then be solved using the method

of Severo (1969a,1969b).
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It is now possible to establish Gaver's (1979) model for

information flow under mutual attrition in a stochastic frame-

work. Thus, we have

AI(x,t) = auab* and A2 (xt) = ua r *

where a ua and 6ua represent the rate of conversion from an

unaimed capacity to aimed capacity for the Blue and Red forces,

respectively;

Ul(x,t) = Puar*b/B + aarb/(b + b*)

and

12(x,t) = Yuab*r/R + Yaabr/(r + r*),

where pua represents the attrition rate of the unaimed Red

forces against the aimed Blue forces, p represents the attrition

rate of the aimed Red forces against the aimed Blue forces, and

Yua and y aa are the corresponding attrition rates of the Blue

forces against the Red forces; and

Y7(x,t) = P uur*b*/B + paurb*/(b + b*)

and

Y2 (x,t) = Yuub*r*/R + yaubr*/(r + r*)

where puu and pau represent the rate of attrition to the unaimed

Blue forces due to the unaimed and aimed fire, respectively, from

the Red forces, and yuu and yau are similarly defined attrition

rates of the Red forces.
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6. COMBAT DURATION TIME

The previous sections have been concerned primarily with

techniques for obtaining the state probabilities of the underlying

distribution. A knowledge of these probabilities allows most

other quantities of interest to be derived. One such quantity

is the combat duration time or the expected length of time for

the battle. While this can certainly be obtained from our earlier

results, we present here a relatively easy straightforward but

recursive method for its derivation.

Suppose that at t = 0, the Blue force has B units

and the red force has R0 units. Let us assume that the combat

ends when the Blue force is reduced to a size of B' units and/or

the Red force is reduced to a size of R' units. Hence, the

permitted state space for (b,r) is now A' = {(b,r):B' < b < B0 ,

R' < r < R0  instead of the A used in the previous section.

(The adjustme.:t from A to A' in the results given earlier

is trivial.) Let T(b,r) be the expected combat duration time

from the time that there are b Blue units and r Red units

remaining. Then, T(B0 ,R0 ) will be the overall combat duration

time. For ease of illustration, let us suppose we have the simple

Lanchester combat model where a(b,r,t) = Xr and (b,r,t) = b.

More general models are treated analogously.

We first recall that the basic underlying process is

Markovian. From (2), and basic properties of Markov processes,

we see that when the system moves from the state (b,r) it moves
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to the state (b-l,r) with probability Ar/(b + Ar) or to

the state (b,r-l) with probability b/(b + Ar). Finally, before

leaving the state (b,r) it will have stayed there for an average

time of 1/(b + Ar). Therefore, we can write

(13) T(b,r) = 1/(b + Ar) + Ar/(b + Ar) T(b-l,r) + b/(b+ Xr) T(b,r-l),

for (b,r) E A'. In (13), T(b,r) -O for (b,r) f A'. Clearly

then, by starting at (b,r) = (B',R') and proceeding with

(B',r), r = R'+l, ... , R0, returning to (B'+l,r), r = R' .. ,Ro

and so on to (B0 ,r), r = R',...,R 0 , we can find T(B0,R 0 ). Note

that in fact we have a matrix of T(b,r) values which give us

the duration time from any intermediate stage (b,r) in addition

to the overall duration T(B 0 ,R 0)
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